Толщина покрытия и ее измерение

Главная страница » Инспектирование » Толщина покрытия и ее измерение

Инспектирование

Толщина лакокрасочного покрытия и ее измерение

О том, какой должна быть толщина лакокрасочного покрытия на металлоконструкциях и как ее правильно подобрать, можно узнать здесь.

Толщина лакокрасочного покрытия является основным параметром, характеризующим его долговечность.

Фактически любое покрытие в физическом смысле является барьером, отделяющим защищаемую от коррозии поверхность от внешней среды, и в общем случае чем выше толщина такого барьера, тем более длительной будет защита от коррозии.

Сегодня невозможно представить проект антикоррозионной защиты или окрасочную спецификацию без указания толщин слоев системы покрытия. Толщина отдельных слоев и системы в целом назначается согласно требованиям стандартов или по результатам ускоренных испытаний, и только добившись необходимой толщины можно быть уверенным в том, что система проработает в течение заданного времени.

Правила 80/20 и 90/10 для замеров толщины лакокрасочного покрытия

Очевидно, что нанести покрытие, обеспечив требуемую проектную (номинальную) толщину с точностью до микрона, невозможно, и поэтому в окрасочной спецификации должен быть установлен диапазон допустимых толщин, который, как правило, согласовывается сторонами проекта.

Минимально допустимая толщина часто определяется по правилу 80/20, в соответствии с которым 20% выполненных замеров могут иметь толщину не менее 80% от номинального значения, а остальные 80% замеров должны иметь толщину не менее номинальной. Существует также практика применения правила 90/10 (читается аналогично правилу 80/20): например, определение толщин в соответствии с этим правилом предусматривает стандарт PSPC для окраски балластных танков судов. По согласованию между сторонами возможны и другие варианты назначения минимально допустимой толщины.

Максимальная допустимая толщина лакокрасочного покрытия

Что касается максимальной допустимой толщины, то здесь ясности меньше и, соответственно, больше дискуссий. Например, ISO 12944-5 рекомендует не допускать трехкратного превышения номинальной толщины, при этом указывает, что для некоторых покрытий и систем может существовать критическая максимальная толщина. Для таких покрытий, продолжает ISO 12944-5, необходимо руководствоваться указаниями производителя.

Действительно, последняя оговорка очень важна, и возможность трехкратного превышения номинальной толщина допустима не для всех случаев и не для всех покрытий. Дело в том, что все конструкции в процессе эксплуатации испытывают деформации, и вместе с конструкцией те же деформации испытывает и нанесенное покрытие. Чем больше толщина, тем менее эластичным будет покрытие, и тем быстрее оно разрушится в ходе деформационных циклов. Поэтому для конструкций, подвергающихся значительным деформациям, особенно в сочетании с большими температурными градиентами, необходимо очень тщательно подходить к ограничению максимально допустимой толщины, и самым надежным источником информации в данном случае является опыт и рекомендации производителя покрытия.

Другая сторона этой проблемы состоит в том, что независимо от условий эксплуатации не все покрытия способны работать при большой толщине. Так, например, многие цинкэтилсиликатные покрытия растрескиваются при трехкратном превышении толщины еще до начала эксплуатации. Опять же, определяющую роль при назначении максимально допустимой толщины играют рекомендации производителя.

Толщиномеры для определения толщины лакокрасочного покрытия

Измерение толщины сухого покрытия может производиться разрушающими и неразрушающими способами.

Для измерения толщины неразрушающим способом используются специальные приборы – толщиномеры. В зависимости от магнитных свойств подложки наиболее популярными являются толщиномеры, работающие по принципу магнитной индукции (магнитные подложки) и вихревых токов (немагнитные подложки).

Углеродистая конструкционная сталь обладает магнитными свойствами, соответственно, для нее применяются магнитные толщиномеры, работающие по принципу магнитной индукции. Пример такого толщиномера показан на Рис.1.

Рисунок 1. Магнитный толщиномер. На сегодняшний день на рынке представлены множество моделей, которые имеют единый корпус и съемные датчики для магнитных и немагнитных подложек.

При работе с магнитным толщиномером необходимо помнить о погрешности измерений, обусловленной тем, что на создаваемое прибором магнитное поле могут влиять следующие факторы:

а) геометрия окрашиваемой поверхности:

  • на поверхностях, имеющих кривизну, замеры могут быть ошибочны;
  • некоторые модели толщиномеров имеют ограничения по толщине подложки
  • существует понятие краевого эффекта, который проявляется в том, что замер может быть некорректным вблизи кромки. ГОСТ 31993-2013 «Материалы лакокрасочные. Определение толщины покрытия» указывает, что измерения необходимо проводить на расстоянии не менее 20 мм от края поверхности.

б) свойства материала окрашиваемой поверхности, например, проницаемость, проводимость, а также свойства, обусловленные какой-либо предварительной обработкой (см. рекомендации производителя прибора);

в) шероховатость окрашиваемой поверхности;

г) другие магнитные поля (остаточный магнетизм подложки и внешние магнитные поля). Так, например, выполняющиеся в непосредственной близости сварочные работы могут быть причиной неточных замеров толщины покрытия. Остаточный магнетизм подложки может проявляться, например, в районе сварных швов.

При выполнении замеров часто возникает вопрос о том, на каких участках и сколько замеров выполнять. ISO 12944-7 указывает, что это является предметом договоренности сторон, а, например, стандарт SSPC PA2 требует выполнять пять замеров на каждые 10 квадратных метров контролируемой поверхности и определять среднее значение (в зависимости от общей площади окрашенной поверхности количество замеров может меняться). Согласно требованиям ISO 19840 на одном квадратном метре площади нужно делать не менее 5 замеров и не менее 10 замеров, если площадь составляет от 1 до 3 квадратных метров, и т.д. Оптимальным вариантом является ситуация, когда требования по замеру толщин прописаны в проектной спецификации.

ISO 19840 (измерение толщины сухой пленки на шероховатых поверхностях)

Отдельного рассмотрения заслуживает стандарт ISO 19840 «Защита от коррозии с помощью защитных лакокрасочных систем. Измерение толщины сухой пленки на шероховатых поверхностях и критерии приемки», и это связано с тем, что в большинстве случаев приходится иметь дело именно с шероховатыми поверхностями. На шероховатых поверхностях толщина покрытия над пиками и во впадинах рельефа будет разной, при этом минимальная толщина будет иметь место над пиками, то есть именно эти участки поверхности будут самыми слабыми с точки зрения защиты от коррозии. Задача исполнителя работ, таким образом, сводится к тому, чтобы обеспечить необходимую толщину над пиками рельефа поверхности.

На шероховатой поверхности магнитные толщиномеры определяют толщину покрытия от средней линии рельефа (см. Рис. 2), то есть фактическая эффективная толщина покрытия (толщина над пиками) будет всегда меньше, чем значение, определяемое толщиномером.

Рисунок 2. Средняя линия рельефа шероховатой поверхности (ТСП – толщина сухого покрытия)

ISO 19840 предлагает следующее решение этой ситуации: в зависимости от величины шероховатости определяется поправочное значение (см. Табл. 1), учитывающее влияние профиля поверхности, которое впоследствии вычитается из значения толщины, полученного путем замера.

Таблица 1. Поправочные значения, учитывающие влияние профиля поверхности

Шероховатость поверхности согласно ISO 8501-3

Поправочное значение, мкм

Fine (низкая)

10

Medium (средняя)

25

Coarse (высокая)

40

Если шероховатость поверхности неизвестна, то поправочное значение принимается равным 25 мкм.

На каждой конструкции присутствуют участки, определение толщины на которых затруднительно. К таким участкам относятся, например, сварные швы, свободные кромки, различные вырезы и труднодоступные места. С точки зрения защиты от коррозии эти участки являются критическими: в частности, сварные швы являются более электроотрицательными по отношению к основному металлу, т.е. являются анодом и разрушаются интенсивнее, чем основной металл. Если говорить о труднодоступных участках, то на них не всегда удается качественно нанести покрытие, в связи с чем контроль толщины на этих участках особенно важен.

Перечисленные выше критические участки обычно трудно прокрашивать методом распыления, поэтому для них предусмотрена дополнительная защита в виде полосового окрашивания. Если в дополнение к каждому основному слою нанести полосовой слой, то защита от коррозии будет надежной, однако, необходимо соблюдать аккуратность и не превысить максимально допустимую толщину во избежание растрескивания покрытия.

В тех случаях, когда нанести основной слой распылением затруднительно (кромки вырезов малого диаметра, труднодоступные места и т.п.), и нанесение возможно только кистью, контроль толщины можно производить визуально при условии, что наносимые слои имеют контрастные цвета. Толщина одного сухого слоя, нанесенного кистью, как правило, составляет от 50 до 80 мкм, и если знать, какое количество слоев было нанесено, то можно получить приблизительное представление об общей толщине всего покрытия. Также существуют толщиномеры, позволяющие определять толщину в конкретной точке поверхности (см. Рис.3).

Рисунок 3. DeFelsko PosiPen – специализированный толщиномер, позволяющий определять толщину в конкретной точке. Источник: www.defelsko.com

Общая процедура выполнения замеров толщины покрытия выглядит следующим образом:

  1. Проверка точности показаний толщиномера на неокрашенной эталонной металлической пластинке. Тестовый эталон должен быть абсолютно гладким и иметь нулевую шероховатость (точность в соответствии с точностью показаний толщиномера).
  2. Проверка точности показаний толщиномера на тестовых пленках (фольга или пластик). Пленка кладется на неокрашенный металлический эталон, после чего выполняется тестовый замер. Необходимо помнить, что пленки считаются расходными материалами и деформируются в процессе эксплуатации: при разглядывании поверхности пленки под увеличением можно увидеть царапины и вмятины от нажатия датчика толщиномера. Поэтому тестовые пленки рекомендуется менять с определенным интервалом.

Пленки также могут пригодиться при определении толщины физически высохшего, но недостаточно твердого покрытия, то есть в тех ситуациях, когда при установке датчика толщиномера на окрашенной поверхности остается углубление. В этом случае можно положить на поверхность пленку известной толщины и выполнить замер, после чего вычесть из полученного значения толщину пленки.

Для проверки точности показаний толщиномера взамен пленок могут также использоваться окрашенные эталоны с известной толщиной нанесенного покрытия.

Рисунок 4. Эталоны толщины покрытий Elcometer 995. Источник: www.elcometer.com

3. Выполнение замеров в соответствии с выбранным стандартом или проектными требованиями.

4. Вычитание поправки на шероховатость (для шероховатых поверхностей).

При измерении толщины необходимо убедиться, что на окрашенной поверхности в месте замера отсутствуют:

– включения (замер будет некорректен);

– потеки и наплывы (измерение может быть возможно, однако, значительное превышение толщины на таких участках может привести к растрескиванию покрытия в процессе эксплуатации);

– сухая аэрозоль, осевшая на поверхность в процессе нанесения (измерение возможно, однако, сухая аэрозоль не является эффективной пленкой и не создает защиту от коррозии). Перед проведением замеров сухая аэрозоль должна быть удалена.

Кроме того, необходимо убедиться в чистоте датчика толщиномера.

Толщиномер Paint Inspection Gauge

Для разрушающего контроля толщины покрытий обычно применяется толщиномер Paint Inspection Gauge. Такой толщиномер бывает полезен в случае сомнений в качестве нанесенного покрытия: например, если необходимо проверить количество слоев и толщину каждого отдельного слоя.

Рисунок 5. Толщиномер разрушающего типа Paint Inspection Gauge. Источник: tqcsheen.com

Толщиномер Paint Inspection Gauge использует метод клиновидного среза. С помощью шкалы прибора на срезе можно определить количество слоев и толщину каждого слоя.

Рисунок 6. Принцип работы толщиномера разрушающего типа Paint Inspection Gauge. Источник: tqcsheen.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *